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Abstract. Effective formulae for the single-phase periodic solution of the AB system are 
obtained. The solution depends on a complete set of four complex parameters (Riemann 
invariants). The derivation of Whitham equations which describe a slow evolution of the 
modulated periodic solution is presented. The general theory is illustrated by application to 
Ihe problem of soliton creation on k front of a sharp pulse. 

1. Introduction 

As is well known, physical systems exist in which the linear waves are unstable because 
the frequencies of the corresponding dispersion relation consist of two complex conjugate 
values in some region of the control parameter [I ,  21. Such a linear wave will grow untiU the 
nonlinear effects take place. Taking them into account, we obtain the so-called AB system 
of evolution equations, which has a universal nature and can be applied to very different 
physical situations [1,2]. The AB system belongs to the family of integrable equations 
whose soliton solutions can be studied by the inverse scattering transform method. Some 
applications, however, require knowledge not only of the soliton solutions but of the periodic 
solutions as well. For example, as was shown in [3], the self-modulation of waves described 
by the nonlinear Schrainger (NLs) equation can be investigated by the Whitham averaging 
method [4,5]. In this case a small initial disturbance in the unstable system transforms into 
an expanding non-uniform region which can be described as a modulated nonlinear periodic 
wave. The evolution of such a region is governed by the Whitham equations which can be 
obtained by averaging the evolution equations over small-range oscillations. 

In this paper we shall find the periodic solution of the AB system in the effective form by 
the method suggested in [6] for the NLS and DNLS equations, and applied later to some other 
equations in [7,8]. The Whitham equations for the AB system will be obtained by means 
of a convenient modification of the averaging method [7-101. The theory thus developed 
provides an effective approach to non-stationary and non-uniform problems described by 
the AB system. As an example of such an application, we shall consider the problem of 
the creation of solitons on the front of a sharp pulse. This theory is analogous to the 
Gurevich-Pitaevskii approach [ 111 to so-called nondissipative shock waves, but in this case 
Whitham characteristic speeds are complex (as in the unstable N u  case [3,7]), which makes 
the theory much more complicated. 
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2. Periodic solution 

We take the AB system in its canonical form [l] 
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Qrr = Qs St = -i(lQ12)r (1) 

where t and r are semi-characteristic coordinates, Q and S are the wave amplitudes obeying 
the normalization condition 

(2) 

The inverse scattering eansform method is based on the possibility of  presenting 
equations (1) as a compatibility condition of two linear systems: 

IQr[’ + S2 = 1. 

(3) 
swat = F $ ~  +w2 awas = + B $ ~  
a $ 2 ~ a e  = ~ $ 1  - w2 a w a r  = w1 - A $ ~ .  

Requiring a2+l,2/afar = az$l .2/asa~,  we obtain the equations 

+ C G - B H = O  
aF a A  
as a t  
aG a B + 2 ( B F - A G ) = 0  

an a c + 2 ( A H - C F ) = 0  

a t  a t  

as ae 
which coincide with (1) if one sets 

F = -ih G = Q / 2  H = -Q’/2 

(4) 

(5) 

(6) 

The system (3) has two basic solutions, ($1, $2) and (41, &), which can be used to 

1 1 1 
4ih 4ih 42. 

A=--S B=-Qr  C = - Q *  

where h is an arbitrary spectral parameter. 

build a vector with the spherical components 

i 
(7 ) f = -5($142 + $241) g = $141 h = -$ 242 

satisfying the following hear systems: 

afpt = -iHg + iGh 
ag/a6 = 2iGf + 2Fg 
ah ia t  = -2iHf - 2Fh 

aflar = -iCg + iBh 
ag/ar = 2iBf + 2Ag (8) 

During the evolution the length of the vector with components (7) is preserved, that is the 
quantity 

(9) 
is independent of and r .  The periodic solution is distinguished by the condition that 
P = PO.) be a polynomial in A. The single-phase solution corresponds, as we shall see, to 
the fourth-degree polynomial 

ah las  = -2icf - 2Ah. 

f 2  - gh = P(A) 

4 

P(A) = n ( h  - hi) = h4 - s1h3 + szh2 - s3h + s4 (10) 
i=l 
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where the Ai are its zeros. It is easy to find that the systems (8) are satisfied if we take 
Q Q* f =A2--fiA+aS g=-A+iaQ,  h=--A+iaQ: 
2 2 

where fi and a are some constants. 
equation (1 1) in (9) and comparing the coefficients of A3 and .Lo: 

(11) 

Their values can be obtained by substituting 

(See below about the choice of the sign before the root.) 
Now it is convenient to introduce the point of the auxiliary spechun 

so that 
Q Q* 

g = y(A - p) h = --(,I - p*). 2 
If we substitute equation (14) in (8) and put A = 1.1, then we shall obtain the evolution 
equations for &: 

Thus, p depends only on the phase 

The condition that the phase velocity of the nonlinear wave lies between two values of group 
velocities of the initial physical system (these p u p  velocities enter into the definitions of 
the variables 6 and r )  requires a < 0 (see [I]), what was used in (12) and will be assumed 
to hold in what follows. In particular, such a choice leads in the limit of infinite wavelen,d 
to stable solitons. 

One can find from (8), (Il), (13) and (14) that 

provided Q satisfies the equation 

The equations thus derived form the basis of the ‘finite-gap’ method for obtaining the 
periodic solutions. From now on we shall follow the method of 161. 

In the case of the AB system, as in many others, the operators corresponding to 
(3). (5), (6) are not self-adjoint and, hence, their eigenvalues, which coincide with the zeros 
Ai, i = 1.2,3,4, of the polynomial P(h) ,  may be complex. Therefore the variable p 
moves along some curve which defines the contour of integration when one calculates 
p(W) according to (16). It seems natural to determine this contour explicitly for 1.1 by 
means of introducing some coordinate parameter v along it. The dependence p(u) must be 
such that the constraint (9) is satisfied identically. After substitution of (11) and (14), the 
constraint (9) takes the form 

(A2- f iA+aS)2+~[Q12(A-~) (h - -* )  = P(A).  (19) 
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As in [6], we choose the variable 
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v = 1r?V4 

as a parameter along the contour of @. Comparing coefficients of the AX on both sides 
of (19), we obtain the equations 

2fl=sl f:+2as+u=sz 
2flQS + u(p  + p') = s3 

(21) 
(QSY + up@* = s4 

which coincide with the corresponding system in the case of the NLS equation [6]. Its 
solution has the form 

A = ?  a s = - + -  sz p - U  @ = - -  s qti- S 
(22) 2 2u 16 2 

where 

R ( U )  = u3 - 2pu2 + (p2  - 4r)u + q2 (23) 

is the cubic resolvent of the polynomial P(X) whose zeros uj ,  j = 1,2,3, are related to the 
zeros Xi, i = 1,2,3,4,  by simple symmetrical formulae: 

The parameters s, p3 q ,  r are connected with the coefficients of P(X) according to 

s = s l  p=sz-gs:  q = l s ( s  - l a  2 1 2 $1) - s 3  

r = Sd + &.:(sZ - +;) - +SI&. (25) 

As in [6], the zeros Ai consist of the two complex conjugate pairs Xl,h3 and hz, A4 

A l = a + i y  Az=,B+i8 X3=a- iy  X4=,3-i8 (26) 

so that equations (24) yield 

U1 = -(a - p)2 U2 = ( y  - 8)Z U3 = ( y  + 8)Z. (27) 
The positive (according to definition (20)) variable U oscillates in the interval vz < U 4 u3, 
so that @(v) is a cubic curve going around the zeros 11, As = X; (see [6]). The dependence 
of U on the phase W is governed by the equation 

du -- 
derived in [6]. Integration of this equation yields the simple expression for dependence of 
lQlz on W: 

= 4u 

= 4[u3 + (vz - u3) sn*(-,'FTiY, m)] 

= 4(y + 8)' - 16y8 sn2{[(y + 8)' + (a - ,B)2]1/2W, m )  (29) 
where we use the more convenient parameter 
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instead of the usual k = fi, and the initial condition corresponds to the maximum value 
of the intensity at W = 0. If we know U, we can easily find S from the 
second expression in (22). 

It is convenient to express the variable Q in terms of Weierstrass elliptic functions as 
was done in [6] for the solution of the NLS equation. Equation (29) corresponds to 

= 4(y + 

v = {p - 4@(2W +U') (31) 
where U' is a half-period of the @-function. 
expression for p as a function of W: 

Substitution of (31) into (22) gives the 

Integration of (18) with the help of (32) yields 

1 Q = m e x p [ g l +  -g d(2W) 
iq I" p(2W + id) - p/6 (33) 

where the integral can be calculated as in [6]. The final expression for Q has the form 

where the & are the Jacobi theta-functions, <(x) is the Weierstrass <-function, the parameter 
x is determined by 

Sin9 

= 2iF(q, m') dz 
J(1 - $)(I- mlzz) 

~ ( y  + 812 + (or - ~ ) 2 x  = 2i S 
0 

m' = 1 - m, and the angle 9 has simple geomehhl meaning 

(35) 

Let us consider some limiting cases of this general periodic solution. Let p = a, i.e. 
all hi lie on one vertical line. Then, as in [6], we find 

where 

When 8 + y ,  from (34) we obtain 
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where 
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If we put 6 = y in (37) or (Y = f3 in (39), i.e. two pairs of Ai coalesce into one pair, we 
obtain the soliton solution 

and 

The partial case (Y = 0 corresponds to the real solution discussed in 111. 

solution (see [l]). 
The other choice of sign before a in (12) in this l i t  would give us the unstable soliton 

3. Whitham equations 

In a non-uniform case the parameters hi become functions of the space coordinate 6 and 
time r ,  The wavelength of the solution obtained in section 2 is given by 

If this wavelength L is much less than the characteristic size which the parameters Ai change 
considerably, then the evolution equations for Ai can be averaged over the fast oscillations 
with wavelength L,  and we arrive at the Whitham equations [4,5]. Integrable equations 
possess an infinite set of conservations laws, and in this case it is convenient to average 
their generating function [12]. The AB system belongs to the AKNS scheme [l, 131 and for 
such equations the generating function can be taken 17-10] in the form 

where the functions f, g, h should be normalized according to the condition f Z  - gh = 1 
independent of the slow change in the Ai (see [IZJ). 

For the case of the AB system, substitution of (5). (6), (13) and (14) into (44) gives 

The condition for the vanishing of the coefficients of singular terms, which result from 
differentiation of with respect to r and 6 ,  yields the equations ( I ) a i ,  1 (( 1 ) 1 ) a i .  2 = 0  

k i - p  as 4a hi -!J at 
where averaging has been performed according to the rule 

(46) 

in which K = 2 z / L  is the wavevector and ai E a/aA,. Thus, we have obtained the desired 
Whitham equations for parameters Ai in the diagonal Riemann form 

ahi ahi 
as a t  - +vi- - -  = 0 i = 1,2,3,4 
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where the characteristic velocities are equal to 

The form of the characteristic velocities as a result of the action of the differential operator 
in parenthesis on the phase velocity V of the nonlinear wave expressed in terms of the 
Riemann invariants, 

ui = (I  + = a j )  K v (50) 

has a general nature [7,9,10,14,15] and represents, in fact, the conservation of the 'number 
of waves' 14.51 . .  - 

a K  a(KV) 
ar a t  
- =-. 

Here we wish to note that a slight generalization of (49) yields the most general 
expression for the Whitham velocities for integrable equations with the Lax pair operator L 
corresponding to the NLS equation. Indeed, introducing the constant shift into the parameters 
Ai 

(52) 
we obtain the phase velocity of the nonlinear periodic wave for Maxwell-Bloch equations 
in the sharp-line approximation [16] 

L j  + Ai - A 

1 
V =  

4J" 
(53) 

Averaging of this expression over A with the distribution function i (A)  yields the 
phase velocity and Whitham equations for the self-induced transparency problem with the 
inhomogeneously broadened line [16] 

In the limit A + 03, equations (50) and (53) reproduce the Whitham equations for the case 
of the N L ~  equation [171. 

Let us consider this observation from a more general point of view. It is known that 
the Whitham equations for the NLS case 

commute with another flow with velocities (50), if V satisfies the generalized Euler-Poisson- 
Darboux equation 

(ai v - a, v )  
2 1 a . . v  = 
" 2(Lj - A j )  

(see [14,15,16,19]). The system (56) has the solution 
1 

v=JTnG=) (57) 

which reproduces equation (53). Thus, all the above-mentioned cases correspond to the 
flows commuting with each other. Knowledge of the commuting flows allows one to 
construct the solutions of the Whitham equations by the generalized hodograph method 
[20,21]. However, some results can be obtained by simpler methods. One such an example 
is discussed in section 4. 
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4. Soliton creation on a pulse front 

Let US consider the evolution of a step-like pulse. The plane-wave solution of the AB system 
corresponds to 6 = 0, and in this limit we obtain the following expression from (34) with 
p z (L (see the analogous calculation in [b]) 

A M Kamchatnov and M V Pavlov 

Let the pulse have a sharp front, that is 

IQ(<, ON = 2y for 6 < 0 lQ(6, ON= 0 for < t 0. (59) 

Such a front is unstable because of dispersion and modulation instability, which follow from 
the dispersion relation of the linear modulation wave of the plane-wave solution (58): 

(60) 
1 K , / ~ - z L ~ K  

'=z-' KZ-4(a2+yZ)  ' 

This dispersion relation was obtained by linearization of the AB system with respect to a 
small periodic perturbation of (58) with wavevector K and frequency a. We see that the 
modulation waves with K > 2y are stable, but for K c 2y there is modulation instability. 
Due to dispersion and this instability, the localized disturbance (such as a sharp front in our 
case) will change its form at the linear stage, and one can expect that after some time it will 
transform into the non-uniform expanding region which can be described as a modulated 
nonlinear periodic wave in which the parameters a, @, y ,  6 are slow functions of < and r ,  
so that we can apply the Whitham method. Gurevich and Pitaevskii I1 I] were the first to 
apply such an approach to this kind of problems. In the case of unstable systems it was 
used for the first time in [3,7]. We shall follow here the methods of those articles. 

In the problem under consideration there is no characteristic dimension, hence the 
parameters Ai depend only on the self-similar variable < = c / r .  Since A, = A; and 
A4 = A;, it is sufficient to use only two Whitham equations (48), which in our self-similar 
case take the form 

As we shall see, the solution corresponding to OUT initial data (59) is hl = constant, 
y = r = < / r  or 

(L + iy =constant (624 

where K(m) and E(m) are the complete elliptic integrals. On separating real and imaginary 
parts in the above equations, we obtain the equations 

E(m) @(a2 + P2 + y z  + 8') - 2B(aB + y 6 )  
K(m) B(az + B2 + y z  + P )  - k ( B 2  

1 

(63) 

(64) 

-- - 

a(B2 + - B(a2 + Y*) - _  < - - 
4J(d + y2)(BZ + 6 2 )  (a - 8)(D2 + 6.9 t 
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which, together with (Y = constant, y = constant and equation (30), determine implicitly 
the dependence of 0 and 6 on 5 = t1-c. 

The end-points of non-uniform oscillating region correspond to the limits m -+ 0 and 
m + 1. For investigation of these limits it is convenient to express p and 6 as functions of 
m (as was done in [3] in the case ot the NLS equation). The solution of (30). (63) and (64) 
has the form 

CY 
' (a2 - y2mA(m) + k y 2 A ( m )  ' = ff2 + y2mZA2(m) 

+d4aU2A(m) + 4y2A2(m)(l - m) - (1 + mA(m))2 (651 

where we have introduced the function 
(2 - m)E(m) - 2(1 - m)K(m) 

m2E(m) 
A(m) = 

If m -+ 1 we have 

and according to (64) this edge point moves with the soliton velocity 
1 

If m --f 0, then p and 6 tend to the limiting values 

and equation (64) takes the form 

In this limit of small modulation the Whitham theory must reproduce the linear theory, 
that is U must coincide with the corresponding group velocity of the modulation wave. At  
small S equation (29) gives: 

that is 

It is easy to check that these values of K and C2 satisfy the dispersion relation (60). 
Calculation of group velocity up = dn/dK at this value of K reproduces, as we expected, 
equation (71). One can find that us < uE for all ff and y ,  if @ is given by (70). 

We see that the sharp front transforms into the expanding oscillatory region. The faster 
edge of this region moves with the soliton velocity and consists of the train of solitons. 
The slower edge propagates with the group velocity of the small modulation wave. The 
whole region can be described as a modulated nonlinear periodic solution of the AB system. 
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The emerging picture looks like the so-called ‘nondissipative shock wave’ [I 1,22,23], but 
in our case the system of Whitham equations is not hyperbolic, but elliptic. The solution 
found is stable at both its edges-in the soliton region and in the small modulation region 
(where K > 2y, as one can see from (72)). This example and the results presented in [3,7] 
show that Whitham theory is rather effective in such unstable (elliptic) cases, too. 

5. Conclusion 

Examples of derivation of periodic solutions and the corresponding Whitham equations by 
the methods suggested and applied in [&lo] show that these methods are rather convenient 
and useful for all integrable equations described by the AKNS scheme. By these methods 
we obtain the periodic solution in an effective form, and the form of the corresponding 
Whitham equations reflects their symmetry properties appearing due to the existence of 
commuting flows. Knowledge of the periodic solutions and Whitham equations permits one 
to investigate concrete physical problems, as was illustrated in section 4. 
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